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Abstract

» Goal: Model incrementality AND expectation/prediction.

» Dynamic Syntax provides a formalism for incremental dialogue,
making it eligible for a general story about expectation/prediction.

» Distributional semantics: words are not fixed concepts, but points in a
vector space, words with similar affordances will be nearby points.

» Dynamic Syntax with distributional semantics gives us incremental,
meaning representations.

» The geometric interpretation gives an intuition for prediction and
expectation;

» We can test this theory on real data with incremental semantic
judgments
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People are incremental

» Incremental comprehension and production

» Incremental disambiguation
The footballer dribbled ...
the ball across the pitch.
The baby dribbled ...
the milk all over the floor.
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People are incremental

v

Incremental comprehension and production

v

Incremental disambiguation

The footballer dribbled ...

the ball across the pitch.
The baby dribbled ...

the milk all over the floor.

v

Expectation and prediction

The baby dribbled ...
the ball across the pitch.

v

Cogpnitive neuroscience e.g. Predictive Processing model [Clark, 2015]

> Incremental prediction with learning from an error signal
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DYNAMIC SYNTAX



Partial tree development

> Trees with (typed) formulas and applications

O(X3,0(X1, X2))
/\
X3 O(X1, X2)

X1 Xo

> 7 specifies requirement for further development (type, but no formula)

v

¢ specifies the node currently under development

v

(Links connect trees of arguments, e.g. conjunctives)



Running example DS\
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Running example DS\

“Mary likes..”

Ty(t)

Ty(e), Fo(mary) Ty({e. 1))
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Running example DS\

“Mary likes John..”

Ty(t), Fo(like(mary, john)),
Ty(e), Fo(mary) Ty({e,t)), Fo(Az.like(x, john))

Ty(e), Fo(john) Ty((e, (e, 1)), Fo(AyAw like(w, y))

Requirement: ?Ty(X), pointer: {



Is this incremental enough?

> Incremental enough ...for predictive processing?

> We'd like to model prediction and expectation



Is this incremental enough?

Incremental enough ... for predictive processing?
We’d like to model prediction and expectation

...at a “syntactic” level, we can [Eshghi et al., 2013] ...

v vV VvV VY

...but at a semantic level?

Ty(t)

Ty(e), Fo(mary) "Ty((e, 1))

Ty(e), &> Ty((e, (e, t))), Fo(Ayrz.like(z,y))



Is this incremental enough?

Incremental enough ... for predictive processing?
We’d like to model prediction and expectation

...at a “syntactic” level, we can [Eshghi et al., 2013] ...

v vV VvV VY

...but at a semantic level?

Ty(t)

Ty(e), Fo(mary) "Ty((e, 1))

Ty(e), &> Ty((e, (e, t))), Fo(Ayrz.like(z,y))

> What’s the notion of similarity? The error signal?
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Good news! it’s a general model

Compatible with any suitable semantic framework [Kempson et al., 2001]

O(X3,0(X1,X2))

/\
X3 O(XLXQ)
/\
X1 X2

DS-TTR: [Purver et al., 2010]
DS-MTT: Next talk (Stergios)

Let’s insert vectors and tensors!
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Distributional Semantics: Meaning in Context
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army  work  child
king 15 1 3
queen 20 1 1
woman 2 11 5
man 10 3
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G. J. Wijnholds

Composing Word Embeddings: A Challenge

/N
k‘lhﬂ)
/! Vtzc‘cor'
/
s =Man Gusen Com(’nﬁ\\"‘ﬁ'\
/ - - ,.)a
V-
H\NJ0AOuN
%
Coordination dancing and running = 77
Quantification Every student likes some teacher = 77
R
Anaphora shaves himself = 77
Ellipsis Ruth went to Malta and Gijs did too = 77
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Compositional Vector Semantics

SOURCE Homomorphism TARGET
Categorial Grammar Vector Spaces
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Compositional Vector Semantics

SOURCE

Categorial Grammar

Homomorphism

Framework
Pregroups/Lambek
LF/PLF

CCG

LG

G. J. Wijnholds

[Coecke et al., 2010, Coecke et al., 2013]
[Baroni et al., 2014, Paperno et al., 2014]

[Maillard et al., 2014]
[Wijnholds, 2014]
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Compositional Vector Semantics

SOURCE Homomorphism TARGET
Categorial Grammar Vector Spaces
Framework
Pregroups/Lambek [Coecke et al., 2010, Coecke et al., 2013]
LF/PLF [Baroni et al., 2014, Paperno et al., 2014]
CCG [Maillard et al., 2014]
LG [Wijnholds, 2014]
Specific phenomena
Coordination [Kartsaklis, 2016]
Relative Pronouns [Sadrzadeh et al., 2013, Moortgat and Wijnholds, 2017]
Quantification [Hedges and Sadrzadeh, 2016, Wijnholds, 2019]
Ellipsis [Wijnholds and Sadrzadeh, 2018, Wijnholds and Sadrzadeh, 2019b]
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Compositional Vector Semantics

SOURCE Homomorphism TARGET
Categorial Grammar Vector Spaces
Framework
Pregroups/Lambek [Coecke et al., 2010, Coecke et al., 2013]
LF/PLF [Baroni et al., 2014, Paperno et al., 2014]
CCG [Maillard et al., 2014]
LG [Wijnholds, 2014]
Specific phenomena
Coordination [Kartsaklis, 2016]
Relative Pronouns [Sadrzadeh et al., 2013, Moortgat and Wijnholds, 2017]
Quantification [Hedges and Sadrzadeh, 2016, Wijnholds, 2019]
Ellipsis [Wijnholds and Sadrzadeh, 2018, Wijnholds and Sadrzadeh, 2019b]
Evaluation [Grefenstette and Sadrzadeh, 2011, Kartsaklis and Sadrzadeh, 2013]

[Milajevs et al., 2014, Wijnholds and Sadrzadeh, 2019a]
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Compositional Vector Semantics

> Instead of types, we have vector spaces:

le] = w
Lt] = S
le—>t] = W®S

» Instead of formulas, we have vectors, tensors and contractions:

_ mary

mary® = .77 ew
likes(mary, john)° = TV le’,’(‘es TI{Oh" €S
Ax.likes(mary,x)° = T Té’/{‘“ EWR®S



An example

infant  nappy  pitch  goal
baby 34 10 0 0
milk 10 1 0 0
footballer 0 0 1 52
ball 0 1 27 49
Tiword cw

bab i
T,' a y7 T-m’[k, Tfootballer7 Tiba[[ cw

baby

T = (34,10,0,0)

Vector learnt from co-occurrence counts



An example

(infant, T) (infant, 1) (nappy, T) (nappy, L) (pitch, T) (pitch, L) (goal, T) (goal, L)
2 9 3 9 0

vomit 10 12
score 1 7 0 8 7 1 8 0
dribble 22 2 21 3 14 10 16 8

T ewes

i dribble
T’;omlt’ 7—5_core7 Tij” e cw ® S
10 2
vomit __ 9 3
=1 s 9
0 12

Matrix learnt from plausible (i.e. observed) subject-verb combinations vs. randomly
generated implausible combinations. [Polajnar et al., 2014]



An example

34 10 2
baby +vomit __ 10 9 3
=1 o [ X] 3 o
0 0 12



babies Tvomit _
rpabis yomit —

An example

34 10 2
baby +vomit __ 10 9 3
=1 o [ X] 3 o
0 0 12

(Cf“b)’cﬁ)mit + Cé’“byczv?mit + Cé’“bycé/fi?mit + CfabyCX?mit)T-l—
(Cfabyc%/gmit + Cé’“b}’c{gmit + Cg“bycé/zomit + Cf“b)’CXgmit)J_
=(34x10+10x9)T 4+ (34 x 2410 x 3)L

=430T +98L



An example

34 10 2
baby +vomit __ 10 9 3
TG =1 0 | 5 o
0 0 12
Tibabies T’}(omit — (Cf“b)’cﬁ)mit + Cé’“byczv?mit + C;’“bycé/ti?mit + CfabyCX?mit)T-l—

(Cfabyc%/gmit + Cé’“b}’c{gmit + Cg“bycé/zomit + Cf“b)’CXgmit)J_
=(34x10+10x9)T 4+ (34 x 2410 x 3)L
=430T +98L

rhabies score _ 5, + 3181
rbabies dribble _ gso 4981



An example

(infant, T , infant) (infant, L, infant) (infant, T, nappy) (goal, T, ball) (goal, L, ball)
control 0 2 1 0 1
dribble 1 4 2 6 8

i;;(ord EWRSQW
T,;E"tml , T;l[:ibble EWRSRW

T,-j-,‘:"”"[ = (a cube)



An example

(infant, T , infant) (infant, L, infant) (infant, T, nappy) (goal, T, ball) (goal, L, ball)
control 0 2 1 0 1
dribble 1 4 2 6 8

-[-i;;(ord EWRSQW
7-’§Zntral , -’-glcibble EWRS®W

T,-J‘-Z"""[ = (a cube)

> Note that we’re not limited to plausibility: S is arbitrary

> But plausibility may be able to model semantic prediction/expectation/surprise, more on
that later



DYNAMIC SYNTAX WITH TENSORS



Tensor Trees

> Abstract Tree
O(X3,0(X1, X2))

/\
X3 O(Xl,XQ)
/\
X1 X2
> Mapping objects

X1 — Tilizmi" e Vidah---V,

X2 = :Z-’inin+l'“in+)c S Vn ® Vn+1 [ Vn+k

X3 = Tin+kin+k+1---in+k+m € Vn+k ® Vn+k+1 & Vn+k:+m

> Mapping maps

O(Xy, Xs)

Ti1i2'“inTinin+1“'in+k
VieVe@ - @V,.1@ V1 ®- @ Vg

Tivivin Tininsrowrinsr Tingrinnsningagm
ViV Ve 1@V ® @ Vigk1 @ Va1 @ @ Virkym

O(X3,0(X1, X))

mlIml



Incremental DS-Tensor: Requirements

v

Several possible approaches

v

Identity I: no information
Sum T*: sum of vectors/tensors inhabiting W, W @ S

> (average expectation)

v

» Direct sum T®: tuple of vectors/tensors

> (all possibilities, to be reduced as parsing proceeds)
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Running example DS-Tensor

“« »

Mary...
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w, ey W ® S,



Running example DS-Tensor

“« »

Mary...

78

w, ey W ® S,

Mary Requirements: The active node is decorated

with the identity in that space.




Running example DS-Tensor

“Mary likes..”

28
w,Tiery WS

WO W S®W,Tlikes

Mary likes

My Requirements: The active node is decorated

with the identity in that space.



Running example DS-Tensor

“Mary likes John..”

marymlikepjohn
S,V THEe T ¢
mary likerpjohn
W, T, W ® S, TkeT)

— ,
WTM WeSe W, Tl

Mary likes
R Requirements: The active node is decorated

-, e tesiohn with the identity in that space.



Extends to general DS trees

“mary, ...” “.who ..”
78
78
w, T wWes
WY 4 WS 78
|
w, 1:".‘."1,1 s
“.sleeps, ..”
78
w, Ty W®S, O
1
w pervgsiees
W,z W s, il
“..snores ...”
S (T TV T, &
W, ey W@ S, T x
W, gyrervpslecr
1
W,z W e ST

Figure 4: A DS with Vector Space Semantics parse of “Mary, who sleeps,
snores*’.



INCREMENTAL SEMANTIC JUDGMENTS



Disambiguation dataset: KS2013

» Kartsaklis D., Sadrzadeh M., and Pulman S. Separating disambiguation
from composition in compositional distributional semantics.

» Chose ambiguous verbs and two landmark meanings from
[Pickering and Frisson, 2001].

» Picked subjects and objects using most frequently occurring ones in
the British National Corpus (ca. 100M words).

» Asked humans to judge similarity in order to assess disambiguation by

subjects/objects.
» Example:
Amb. sentence Landmark
control  transmit
nerve conduct signal 3.35 5.19

staff conduct research 4.05 2.7
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Incremental Disambiguation

» Using a retrained 300-dimensional word2vec space W = N
» Following [Grefenstette and Sadrzadeh, 2011]:

» Transitive S-V-O sentences
» Take S=N® N

» Build tensors from S-V-O occurrences in dependency-parsed
corpus
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» Using a retrained 300-dimensional word2vec space W = N
» Following [Grefenstette and Sadrzadeh, 2011]:

» Transitive S-V-O sentences

» Take S= NN

» Build tensors from S-V-O occurrences in dependency-parsed
corpus

» Full sentences:
» Cos(baby dribble milk, baby drip milk) = 0.6532
< Cos(baby dribble milk, baby control milk) = 0.6709
» Cos(footballer dribble ball, footballer control ball) = 0.6336
< Cos(footballer dribble ball, footballer drip ball) = 0.7740
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Incremental Disambiguation

» Using a retrained 300-dimensional word2vec space W = N
Following [Grefenstette and Sadrzadeh, 2011]:

» Transitive S-V-O sentences

» Take S= NN

» Build tensors from S-V-O occurrences in dependency-parsed
corpus

v

Full sentences:
» Cos(baby dribble milk, baby drip milk) = 0.6532
< Cos(baby dribble milk, baby control milk) = 0.6709
» Cos(footballer dribble ball, footballer control ball) = 0.6336
< Cos(footballer dribble ball, footballer drip ball) = 0.7740
Partial sentences:
» Cos(baby dribble ..., baby drip ...) = 0.6731
< Cos(baby dribble ..., baby control ...) = 0.6761
» Cos(footballer dribble ..., footballer control ...) = 0.6608
< Cos(footballer dribble ..., footballer drip ...) = 0.7594

v

v
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Incremental Disambiguation

» Instead of judging correlation of a model with human judgments, we
look at incremental comparison of the ambiguous sentence with its
landmark interpretations,

» This approach now allows us to model expectation:
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Incremental Disambiguation

» Instead of judging correlation of a model with human judgments, we
look at incremental comparison of the ambiguous sentence with its
landmark interpretations,

» This approach now allows us to model expectation:

<
<
<

nerve conduct nerve conduct signal

nerve

nerve control signal nerve control signal nerve control signal

S NY NY¢)
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Incremental Disambiguation: models

v

Additive:
— =
subj + obj + EIZ

Relational [Grefenstette and Sadrzadeh, 2011]:

v

(subj ® obj) ® verb

v

Copy-Subject:

su‘>bj®(m><£;‘)

v

Copy-Object:

- =
(su—>bjT X verb) ® obj

v

Frobenius Outer:

(subj © (verb x ob})) @ ((subj" x verb) ® oby))
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Incremental Disambiguation: Results |
Comparing partial sentences to partial sentences

Verb tensors learnt using plausibility (log. regression between observed SVO triples and
random SVO triples).

0.70 1 — Addition
—— Relational
—— Copy Subject
0651 Copy Object
—— Frobenius Outer
3 0.60
c
3
g
< 0.551
0.50 4
0.45 A

S SV SVO
Sentence Increment
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Incremental Disambiguation: Results Il
Comparing partial sentences to full sentences

Verb tensors learnt using plausibility (log. regression between observed SVO triples and

random SVO triples).

0.70 A

0.65 A

Accuracy
o
(=2}
o
L

o

wn

%)
s

0.50 4

0.45 4

Addition
Relational

Copy Subject
Copy Object
Frobenius Outer

IS

G. J. Wijnholds

SV SVO
Sentence Increment
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Incremental Disambiguation: Results 111

Instead of comparing current vector to ideal vector, we look at the plausibility of the two
landmark sentences.

0.58 A
—— Skipgram 100
——— Skipgram 300
0.56 4 — Count 2000
> 0.54 -
e
3
g
< 0.52
0.50 A

S SV SVO
Sentence Increment



Conclusion |

v

We’ve developed a vector semantics for Dynamic Syntax

v

This allows us to model fluid meaning for DS;

v

Or it allows us to model incremental vector semantics;

v

We can run experiments with incrementality on real data;

v

Expanding this to more datasets/models is work in progress...
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On the horizon..

» Evaluation on real data needs to compare a (incremental) sentence
with its interpretations..

» Plausibility on the other hand models a single representation, but now
can’t be used on the datasets that intuitively anymore..

» But it’s not just the semantic content that is subject to expectations...

— can represent the uncertainty of DS tree building with probabilistic
Directed Acyclic Graphs — work in progress also!
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